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l. Introduction

ﬁhere are many ways to find a goal location, and animals have been shown to use dis- \
tinct strategies (Chersi & Burgess, 2015).

« One strategy, called response learning, involves executing a learnt sequence of actions,
depending on current sensory cues and past actions. Another strategy, which we call
place learning, uses a a cognitive map

o Previous studies in rodents (Packard & McGaugh, 1996; Pearce et al., 1998) and humans
(Doeller & Burgess, 2008) have shown that these strategies depend on different brain ar-
eas. While the striatum underlies response learning, place learning is supported by the
hippocampus.

lll. Striatum but not hippocampus is sensitive to spatial blocking

» We tested spatial blocking (Rescorla & Wagner, 1972) in the water maze: agents learnt
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« An open question that remains is when animals choose for a place strategy versus a re-
sponse strategy

« Here, we introduce a model that aims to capture these eftects. Our model consists of a
striatum learning stimulus-response associations using model-free RL, a hippocampus
that uses a Hebbian learning rule to learn the weights to a goal cell, and a model medial
prefrontal cortex (PFC) that arbitrates between these two

« We use our model to simulate data from a set of experiments probing response learning
and place learning in the Morris Water Maze and the Plus Maze /
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IV.Animals switch to response strategy on the Plus Maze

/- Animals were trained to navigate on the Plus Maze (Packard &
McGaugh, 1996)
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 During training, animals learnt to approach a consistently baited
goal arm, always starting from the same start box

« On day 8 (early) and day 16 (late) animals performed a probe trial,
starting from the opposite start box
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the same turning response as during training

« We modelled lidocaine inactivation as turning off the striatal and hippocampal parts of the model, respectively

o Early in training, most animals follow a place strategy, which can be partially reversed by inactivating hippocampus
o Later in training, animals switch to a response strategy. However, this can be reverted by inactivating the striatum

o Our model captures both these eftects: inactivating hippocampus

ii. Striatal system underlying stimulus-response learning

 Transformed sensory inputs indicate the relative

Sensory Input Cells
angle to the landmarks (see also Dollé et al., 2017)

o 'These connect to action value neurons coding for
the value of each egocentric heading direction
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o These value tracking neurons allow us to compute the temporal difference (TD)
prediction error O
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o The weights between the sensory and value neurons are updated using this predic-
tion error:
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o Here, a is the learning rate and e_ is the eligibility trace of the weight. The trace is
updated as follows, with trace decay parameter A:

ei,a(t + 1) — Visensoryvj§triatum + ) ei,a(t)

iii. Hippocampal system underlying incidental learning

o The hippocampus was modelled as a set of place cells with Gaussian receptive
fields, and a goal cell (Gauthier & Tank, 2017):

« Weights between them are learned using one-shot Hebbian learning when the goal
is reached, with learning rate n:
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o The goal cell firing rate map constitutes a global
value function that can be used to navigate to the
goal, when maximising its slope at each time step

(Chersi & Burgess, 2015)
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iv. Prefrontal cortex selects action with highest value

o Both the striatal and hippocam-
pal systems result in a proposed
action, the values of which are
compared to make a final choice
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Q Conversely, inactivating the striatum caused a switch towards place strategies
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o A place strategy was defined as going to the place were the food was during training. A response strategy was defined as making
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V. Effects of hippocampal lesions on water maze performance

o Pearce et al. (1998) trained animals to navigate in a water maze with intra-maze landmarks. The land-
mark was always 20 cm north of the platform, but the landmark and platform pair were moved each
session to one of 8 different locations

« Hippocampal lesions impair within-session learning, but over sessions the task is still learnt

o Crucially, animals with hippocampal lesions performed better than control animals on the first trial af-
ter the platform and landmark moved
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Escape latency in the water maze for hippocampal lesioned and
control animals (left) and agents (right) on trial 1 (solid lines)
and 4 (dashed line) of each session.
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Control animals linger at the
previous platform location

HPC lesioned animals go directly

to the new platform location O Current platform location

@ Previous platform location

Example trajectories from the first trials of sessions 7 and 8.
Animals and agents using a hippocampal strategy tend to wan-
der around the previous platform location
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VI. Conclusions and Directions
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« We simulated hippocampal and striatal contributions to spatial learning in the Morris Water Maze and the Plus Maze, using a model
relying on model-free RL (striatum) and Hebbian learning (hippocampus)

« Using this model, we were able to explain spatial blocking (Doeller & Burgess, 2008), a gradual switch to response strategies (Packard
& McGaugh, 1996) and the effects of hippocampal lesions in a water maze with changing reward locations (Pearce et al., 1998)

o Our framework is not limited to the spatial domain, as RL can operate on any Markovian state representation, and hippocampus has
been shown to represent non-spatial variables (Aronov et al, 2017). In the near future we will apply our model to non-spatial learn-
ing tasks that probe model-based RL (Daw et al., 2011; Doll et al.

, 2015), which has been shown to involve hippocampus (Miller et al.,
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